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Organisation

Topics: High-Performance Computations of Sparse Matrices

Module 1 (Jan. 24): Sparse Matrix Representations and Computations
Module 2 (Jan. 26): Applications of Sparse Matrix:

= [terative linear solver: Conjugate Gradient method (CG)
= Graph analytics: PageRank algorithm to rank webpages

Lectures based on slides

Practical examples and exercises
Module 1: C codes on Laptop and CLAIX
— numerical kernel implementation
— calling of high-performance libraries for sparse matrices
— testing and benchmarking
Module 2: Jupyter notebooks with Julia on Laptop
— Questions in sequence during the execution of Jupyter notebooks

RWTH l) JULICH

January 26, 2022 Slide 1140 Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE




Part I: Conjugate Gradient Method
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Sparse Linear Solvers

= Solve sparse linear system (Ax = b) in which A is a sparse matrix

= Variety of direct and iterative methods
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Three classes of linear solvers

The methods to solve linear system Ax = b, with A € R™" can be split into thee classes
= dense direct solver

= factor-solve method
= runtime depends on size; independent of A and b, and structure of A
= work well for n up to 10*

= sparse direct solver
= factor-solve based
= runtime depends on size, sparsity pattern of A; (almost) independent of data
= can work well for n up to 10° (or more).
= requires good heuristic for ordering

= indirect (iterative methods)

= runtime depends on data (A and b), size, sparsity, desired accuracy
= requires tuning, preconditioning, - - -
= good choice in many cases; only chose for n = 108 or larger
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Direct solvers vs lterative solvers

Direct Solver

Robust

Black-box operation
Difficult to parallelize =
Memory consumption
Limited scalability
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Iterative Solver

Breakdown issues
lots of parameters
easy to parallelize
low memory footprint

scalable
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Some lterative Solvers

To solve Ax = b with splitting A = L + D + U, with a iterate such that x;,1 = Gx; + f, it converges
only with the spectrum radius p(G) < 1.

= Jacobi method: x;,1 = —D~'"(L+ U)x; + D~ 'b
= Gauss-Seidel method: x;,1 = —(D+ L)~ '"Ux;+ (D+L)"'b

= Successive over-relaxation (SSOR):
Xip1 = (D+wl)™"[(1 —w)D - wU]x; + (D +wl)""(D+ L)~ 'wb

Krylov Subspace Methods: CG, GMRES, BiCGstab - - -
K, (A, b) = span(b, Ab, A%b, ..., A~ "'b)
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Symmetric Positive Definite (s.p.d.) Linear Systems

s.p.d. linear systems

Ax=b, AcR™" A=AT andx"Ax > 0 forall non-zero x € R"
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CG overview

= invented by Hestenes and Stiefel in 1952 as a direct method

= Solve s.p.d. linear system

= Theoretically, converge in n iterations

Each iteration includes a matrix-vector multiply and a few inner products

If Ais dense, each step costs n?, so total cost is n®, same as direct method

get advantage over dense with a cheaper matrix-vector product operation (SpMV)
It can work poorly in reality due to round-off error

= for "good” linear systems, can get approximation in far less than n iterations.
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CG methodology

» f(x) = 1xTAx — bTx
mr=hb-—Ax

= —Vf=Ax— b= rwith As.p.d.

(£ 2)0)-C)
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— Find x s.t Ax = b < Find x s.t f(x) is minimum
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CG methodology
ga ...

» f(x) = 1xTAx — bTx
mr=hb-—Ax — Find x s.t Ax = b < Find x s.t f(x) is minimum
= —Vf=Ax— b= rwith As.p.d.

(Y00
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CG methodology

Method

Given xp as a starting point:
= Searching iterate: x;_ 1 = xx + axpx
= Search direction: py, p1,po, - - -
= Step length: ag, a1, as, -
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How to determine step length oy

Xk+1 = Xk + QpPk

For a given X, and a given direction py, find a s.t f(x) is minimized

df(Xk41) dXk 41 7 AXki1

da Vi) Qo =~ ke T —I{ 1Pk = TPk =0

—r] Pk =0= (b= AXey1) Pk =0 = (b— A(Xk + apx)) = 0 = (rk — aApx) TPk =0

;
I Pk

Pk APk

= O =
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How to pick search direction p

Gradient Descent Method: px = —Vf(xx) = r«

for k = 0,-.maxiter — 1 do
r=>b-— Ax

_r'r

T rTAr
X=X+ ar

if rr is sufficiently small then
exit loop
end if
end for
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How to pick search direction p

Gradient Descent Method: px = —Vf(xx) = rk

r=>b- Ax
for k = 0,-.maxlter — 1 do

r'r

~ rTAr
X =X+ a«ar

if r'r is sufficiently small then
exit loop
end if
r=r—aAr
end for
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How to pick search direction p

Conjugate Gradient Method

given xo, po = —V I = r (r is the gradient of f)
given Xy, Px+1 = fk+1 + BkPx. in which py, and py are A-conjugate (p;_Apk = (Pk+1,Pk)a = 0)

(k1. Pk)A = Pfo 1 APk = (Tt + Brx) TApk = 0

'L . rkT\ 1Apk
= Pk = P, Apx
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Summary

Finally we have

B Xki1 = Xk + aPg '<rk,rj>:0, j<k
" Dkt = Tkst + BrPrk = (Apk.p) =0, j<k
ra= % ® 1y, 11,0, Orthogonal

A = Do, i, P2, - - - - A-orthogonal
"o | PR = span(ro,--- ,rk—1) = span(po,- - -, Pxk—1) =
» (r,p) =0, j<k K(A, o)
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CG algorithm: preliminary version

fozb*
Po=r

for k = 0,-.maxiter — 1 do

Wk =
Q) =

AXO

Apx
Tk TPk
Pr T wi

Xk+1 = Xk + Pk
k1 = b — AXki

if ||rc1]] < tol then

break
end if

Bk =

Prk+1 = k1 + BrPxk

end for

_ Ne1wk
p;Wk
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> SpMV + BLAS 1: AXPY
> BLAS 1: COPY

> SpMV

> BLAS 1: DOT
> BLAS 1: AXPY
> SpMV + BLAS 1: AXPY

> BLAS 1: DOT
> BLAS 1: AXPY
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Summary
Finally we have

B X1 = Xk + Pk
" kit = e — APk
" Pkt = Tkt + BrPx

T T
Mk Px I Ik

n g g
O = ol Ape T Tk

T T
r..1Ap n r
_ k17 Wk Tkt Tkt
] ﬂk = — =t

pf Apx 1Ty

" (re,p;) =0, j<KkK

January 26, 2022

= (re,r;) =0, j<k

= (Apk,pj) =0, j<Kk

® 1y, 11,0, Orthogonal

= Po, P1, P2, - - - - A-orthogonal

= span(ro, - , Ik—1) = span(po, - - -
K(A, n)
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CG algorithm: economical version

n = b— AXO

Po=1To

for Kk =0, -.maxlter — 1 do
wk = APk
ak = Jrlic

Pk " wk

Xk+1 = Xk + akPk
Fk41 = Ik — Qg

if ||rc1]] < tol then

break
end if

Bk =

Pr+1 = Fk1 + BrPrk

end for

Tkt Thtt

1Tk
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> BLAS 1: COPY

> SpMV

> BLAS 1: DOT
> BLAS 1: AXPY
> BLAS 1: AXPY

> BLAS 1: DOT
> BLAS 1: AXPY
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CG: 4 x 4 matrix

Example: Solve

Exact solution:

12 —1 0 8 1
1 14 3 | 31 |2
2 —1 —1 | -10 =
0o 3 8 15 1
k=0 k=1 k=2 k=3 k=4
X0 0 0.545014 | 1.007874 | 1.000058 | 1.000000
X4 0 2.111929 2.008764 1.999956 2.000000
X 0 -0.681267 | -0.984438 | -1.000113 | -1.000000
X3 0 1.021901 1.026010 1.000067 1.000000
[Irc]| | 36.742346 | 5.553680 0.328046 0.001235 0.000000
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CG example 1: HB/nos3

960 x 960 symmetric matrix, FE for Biharmonic operator on Plate

Conjugate Grandient solving linear systems

100 N
- .
1P F \\
~_ _
=2 ~,
—= 10° o
3 N
N — ™,
Y 107 - .
N
107 N
\
107° - \
\\
1w F .
0 100 200 300
iterations
.
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CG example 2: HB/bcsstk15

3948 x 3948 matrix - module of an offshore platform

0

Conjugate Grandient solving linear systems

- ‘ — HB/besstk15:None

0 1000 2000 3000 4000 5000
iterations
.o §
‘ JULICH | Luex
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Convergence Bounds of CG

Let Ay < X2 --- < A\, be the ordered eigenvalues of a s.p.d. A:

Ap—t—A
X1 — X2 < (2550 1%0 — X3

1
s = 115 < 2By g — o[,

where x(A) = 71" is the condition number of A.

Important messages:
= Roughly speaking, if the eigenvalues of A occur in r distinct clusters, the CG iterates will
approximately solve the problem after Q(r) steps.
= A with a small condition number (a single cluster of eigenvalues) converges fast
= e.g., condition number of nos3 matrix is 37723.6, and the one of bcsstk15 is 6.53819¢ + 09.
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Preconditioned Conjugate Gradient algorithm (PCG)

idea: apply CG after linear change of coordinates x = Ty, with det(T) # 0
use standard CG to solve TTATy = T'b, then x* = T~ 1y*
M = TTT is called a preconditioner
can re-arrange computation so each iteration requires one multiply by M (and A), and no final
solve x* = T~ 1y~
if spectrum of TTAT (which is the same as the one of MA) is clustered or x(A) is small, PCG
converges fast
= extreme case: M = A~', which makes MA an identity matrix
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Preconditioned CG: algorithm

with preconditioner M ~ A~" (hopefully)

n = b— AXO

Po="r

for k = 0,-.maxiter — 1 do
Wk = Aek
ok = gt

Xk+1 = Xk + akPk
Ik+1 = Ik — QWi

if ||rk1]| < tol then

break
end if

Bk =

Pr+1 = Tk1 + BrPrk

end for

Tkt Thtd

I‘kak
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> BLAS 1: COPY

> SpMV

> BLAS 1: DOT
> BLAS 1: AXPY
> BLAS 1: AXPY

> BLAS 1: DOT
> BLAS 1: AXPY
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Preconditioned CG: algorithm

with preconditioner M ~ A~" (hopefully)

n = b—AXo
Po="r
ZO:MrO

for Kk =0, -.maxlter — 1 do

wk = Apk
3 Zk

Ok = b

Xk+1 = Xk + axPk
lk41 = Ik — QWi

if ||rc1]] < tol then

break
end if
Zx = Ml’k

_ fk+1 fk+1
Br

Pkt = "k+1 + BkPk

end for
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> SpMV + BLAS 1: AXPY
> BLAS 1: COPY
> SpMV? BLAS 2 GEMV?

> SpMV

> BLAS 1: DOT
> BLAS 1: AXPY
> BLAS 1: AXPY

> SpMV? BLAS 2 GEMV?

> BLAS 1: DOT
> BLAS 1: AXPY
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Some generic preconditioners

For a symmetric positive definite matrix A, some generic preconditioners are:

= Jacobi: M = D~', with D is the diagonal of matrix A

» SSOR": M =P~ ', with P=(D+ L)D~'(D+ L)
= D refers to the diagonal of A
= | refers to the lower triangular part of A

= Incomplete Cholesky factorization: use M = A~', where A = LLT is an approximation of A

with cheap Cholesky factorization

= Compute A= 11"

— Acan be central k wide band of A
— L obtained by sparse Cholesky factorization of A, ignoring small elements in A, or refusing to create
excessive fill-in.

= at each iteration, compute Mz = [~TI~'z with forward/backward substitution

1Symmetric successive over-relaxation
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PCG example 1: HB/bcsstk15

3948 x 3948 matrix - module of an offshore platform

Conjugate Grandient solving linear systems
10 |
w0 l ~——— HB/besstk15:None
| HB/bcsstk5jacobi
ﬂ\.‘\‘ HB/bcsstk15:5S0R
\!
10°
N .
5 |\
o | \
2 wrE )
g w \
| \
III \',‘
107° F ‘I \
| \
II III‘I
o L \ \
0 1000 2000 3000 4000 5000
iterations
RWNTH

January 26, 2022

JULICH

SUPERCOMPUTING
CENTRE

@) JiLiCcH

Forschungszentrum




PCG example 2: Nasa/nasa4704

4704 x 4704 matrix - from NASA Langley

Conjugate Grandient solving linear systems

— Nasa/nasad704:None
Nasa/nasad 704 Jacobi
Nasa/nasad704:550R

IOEKMM

K]
=BT \‘ "\‘\'
=] A b

9 |

g ‘\\ \

107 - AN
w W
[i] 1000 2000 3000 4000 5000
iterations
. )
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PCG example 3: Boeing/crystmO1

4875 x 4875 FEM Crystal free vibration mass matrix

residual

10—5.0

]0—? 5

10—10.0

Conjugate Grandient solving linear systems

Boeing/erystm0OLiNone
-~ Boeing/crystm01jacobi
Boeing/crystm01:SSOR
Ny
.
\\\
- \\~.
S
-
\\..
~.
50 100 150
iterations
January 26, 2022 Slide 26140 J

JULICH

Forschungszentrum

JULICH
SUPERCOMPUTING
CENTRE



PCG example 4: Bai/mhd3200b

3200 x 3200matrixforAlfvenspectrainMagnetohydrodynamics

Conjugate Grandient solving linear systems

~——— Bai/mhd3200b:None
0° Bai/mhd3200bjacabi
Bai/mhd3200b:550R
1° [
K]
o
St
=1
1w
w2 -
|
4] 1000 2000 3000 4000 5000
iterations
.
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Choice of preconditioner

= trade-off between enhanced convergence, and extra cost of multiplication by M at each step
= SpMV if M could be sparse, e.g., Jacobi preconditioner
= BLAS 2 GEMV if M could be dense, e.g., SSOR preconditioner
= goal is to find M that is cheap to multiply, and approximate inverse of A (or at least has a more
clustered spectrum than A)
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Choice of preconditioner

= trade-off between enhanced convergence, and extra cost of multiplication by M at each step
= SpMV if M could be sparse, e.g., Jacobi preconditioner
= BLAS 2 GEMV if M could be dense, e.g., SSOR preconditioner
= goal is to find M that is cheap to multiply, and approximate inverse of A (or at least has a more
clustered spectrum than A)

This strategy of this trade-off will be demonstrated in homework 1 by exercises
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(P)CG summary

= in theory (with exact arithmetic) converges to solution in n steps

= the bad news: due to numerical round-off errors, can take more than n steps (or fail to converge)
= the good news: with luck (i.e., good spectrum of A), can get good approximate solution in < n steps

= each step requires v — Av multiplication
= can exploit a variety of structure in A
= in many cases, never form or store the matrix A explicitly
= A good choice of preconditioner will significantly speedup the solving procedure
= compared to direct (factor-solve) methods, CG is less reliable, data dependent; often requires
good (problem-dependent) preconditioner
= but, when it works, can solve extremely large systems
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Part ll: PageRank Method
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Problem Statement

Not all web pages are equally "important”.

® https://www.bbc.com (BBC)

Vs
® https://brunowu.github.io (My personal webpage)

PageRank (PR):
= an algorithm used by Google Search to rank web pages in their search engine results
= mesuring the importance of webpages..

= introduced by Larray Page. the co-founder of Google.
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https://www.bbc.com
https://brunowu.github.io

PageRank: Links as votes

= Links as votes
= |n-links as votes
= [n-links are not equal:

= Links from important pages count more
= Recursive definition

[source: https://en.wikipedia.org/wiki/PageRank]

RWTH @ ) JULICH | e
SUPERCOMPUTING
January 26, 2022 Slide 31140 Forschungszentrum CENTRE



https://en.wikipedia.org/wiki/PageRank

PageRank: Links as votes

= Each link’s vote is proportional to the
importance of its source page
= Page j with importance r; has n outlinks,
each links gets
= Page’s own importance is the sum of the
votes on its in-links
= a’rank” rjforpage jis ;= 3, ,; gl_
= additional constraint 3 -, r; = 1
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Construct Stochastic Adjacency Matrix from Graph

For a stochastic adjacency matrix M
= Page i has d; out-links
o 0 -Ifi—>j,thel\/lj,':§i,else/\/lﬁzo
= columns sum to 1

@ @
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Construct Stochastic Adjacency Matrix from Graph

(3]

@

January 26, 2022

For a stochastic adjacency matrix M
= Page i has d; out-links
= If i — j, the M = 7, else M; = 0

= columns sum to 1

Adjacency Matrix

0

—_ - OO0
OO O —
o =0 =

1
1
1
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Construct Stochastic Adjacency Matrix from Graph

For a stochastic adjacency matrix M
= Page i has d; out-links
o -Ifi—>j,thel\/l,-,-:gi,else/\/1,-,:0
= columns sum to 1

Stochastic Adjacency Matrix

0o 0 1 1/2
13 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0
o /3 1/
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Construct Stochastic Adjacency Matrix from Graph

(3]

@
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For a stochastic adjacency matrix M
= Page i has d; out-links
= If i — j, the M = 7, else M =0
= columns sum to 1

= r=Mr
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Construct Stochastic Adjacency Matrix from Graph

= r = Mr

= To solve it is to find the eigenvectors with
corresponding eigenvalue 1

= Luckily, Largest eigenvalue of a stochastic
matrix with non-negative entries is 1

= \We can use Power lteration method.

JULICH
SUPERCOMPUTING
CENTRE

RWTH l) JULICH

January 26, 2022 Slide 33140 Forschungszentrum




A PageRank solver based on Power lteration

At t = 0, an initial probability distribution V is randomly generated.
At each time step, the computation, r;. 1 = Mr;
Convergence is assumed when |V;:1 — V;| < € for some small e.

The most important kernel of this solver is r;, 1 = Mr;, SpMV.
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A PageRank solver based on Power Iteration

o o Try to interpret the result

0.39
0.13
0.29
0.19
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Spider traps

January 26, 2022

all out-links are within a group
= Random walk gets “stuck” in a trap
= it absorbs all importance

0 05 0 0 0.142
1 0 05 0| .. [o286
0o 0o o0 1|%h|o2se
0 05 05 0 0.286
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Dead ends

January 26, 2022

@

all out-links are within a group
= "No where to go” for some random
walk

= “leaking” the importance

0 05 O 0.0
1 0 0] with{O0.0
0 05 0 0.0
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Google’s solution: introducing a Damping factor

=S85 +0 - )%

At each time step, the random surfer has two options:
= follow a link at random with probability 5
= jump to some random page with probability 1 — 3
= Common value for 3 is between 0.8 and 0.9

Try the PageRank with Damping factor in the homework.
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PageRank Summary

= "Normal” PageRank
= Topic-specific PageRank (Personalized PageRank)
= Random walk with restarts
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Homework

m CG: ./tasks/homework-1/LinearSolver.ipynb
m PageRank: ./tasks/homework-2/PageRank.ipynb
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