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Organisation

Topics: High-Performance Computations of Sparse Matrices

Module 1 (Jan. 24): Sparse Matrix Representations and Computations
Module 2 (Jan. 26): Applications of Sparse Matrix:

Iterative linear solver: Conjugate Gradient method (CG)
Graph analytics: PageRank algorithm to rank webpages

Lectures based on slides
Practical examples and exercises

1 Module 1: C codes on Laptop and CLAIX
– numerical kernel implementation
– calling of high-performance libraries for sparse matrices
– testing and benchmarking

2 Module 2: Jupyter notebooks with Julia on Laptop
– Questions in sequence during the execution of Jupyter notebooks
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Part I: Conjugate Gradient Method



Sparse Linear Solvers

Solve sparse linear system (Ax = b) in which A is a sparse matrix
Variety of direct and iterative methods
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Three classes of linear solvers
The methods to solve linear system Ax = b, with A ∈ Rn×n can be split into thee classes

dense direct solver
factor-solve method
runtime depends on size; independent of A and b, and structure of A
work well for n up to 104

sparse direct solver
factor-solve based
runtime depends on size, sparsity pattern of A; (almost) independent of data
can work well for n up to 105 (or more).
requires good heuristic for ordering

indirect (iterative methods)
runtime depends on data (A and b), size, sparsity, desired accuracy
requires tuning, preconditioning, · · ·
good choice in many cases; only chose for n = 106 or larger
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Direct solvers vs Iterative solvers

Direct Solver

Robust
Black-box operation
Difficult to parallelize
Memory consumption
Limited scalability

Iterative Solver

Breakdown issues
lots of parameters
easy to parallelize
low memory footprint
scalable
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Some Iterative Solvers

To solve Ax = b with splitting A = L + D + U, with a iterate such that xt+1 = Gxt + f , it converges
only with the spectrum radius ρ(G) < 1.

Jacobi method: xi+1 = −D−1(L + U)xt + D−1b
Gauss-Seidel method: xi+1 = −(D + L)−1Uxt + (D + L)−1b
Successive over-relaxation (SSOR):
xi+1 = (D + ωL)−1[(1− ω)D − ωU]xt + (D + ωL)−1(D + L)−1ωb

Krylov Subspace Methods: CG, GMRES, BiCGstab · · ·

Kr (A,b) = span(b,Ab,A2b, . . . ,Ar−1b)
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Symmetric Positive Definite (s.p.d.) Linear Systems

s.p.d. linear systems

Ax = b, A ∈ Rn×n, A = AT , and xT Ax > 0 for all non-zero x ∈ Rn
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CG overview

invented by Hestenes and Stiefel in 1952 as a direct method
Solve s.p.d. linear system
Theoretically, converge in n iterations
Each iteration includes a matrix-vector multiply and a few inner products
If A is dense, each step costs n2, so total cost is n3, same as direct method
get advantage over dense with a cheaper matrix-vector product operation (SpMV)
It can work poorly in reality due to round-off error
for ”good” linear systems, can get approximation in far less than n iterations.
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CG methodology

Idea

f (x) = 1
2 xT Ax − bT x

r = b − Ax � Find x s.t Ax = b ⇔ Find x s.t f (x) is minimum
−∇f = Ax − b = r with A s.p.d.

(
2 1
1 2

)(
x
y

)
=

(
3
2

)
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CG methodology
Method
Given x0 as a starting point:

Searching iterate: xk+1 = xk + αk pk

Search direction: p0,p1,p2, · · ·
Step length: α0, α1, α2, ·
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How to determine step length αk
xk+1 = xk + αk pk

For a given xk and a given direction pk , find α s.t f (x) is minimized

df (xk+1)

dα
= [∇f (xk+1)]

T dxk+1

dα
= −rT

k+1
dxk+1

dα
= −rT

k+1pk ⇒ −rT
k+1pk = 0

−rT
k+1pk = 0⇒ (b − Axk+1)

T pk = 0⇒ (b − A(xk + αpk )) = 0⇒ (rk − αApk )
T pk = 0

⇒ αk =
rT
k pk

pT
k Apk
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How to pick search direction p

Gradient Descent Method: pk = −∇f (xk ) = rk

Gradient Descent Algorithm

for k = 0, ·.maxIter − 1 do
r = b − Ax
α = rT r

rT Ar
x = x + αr
if rT r is sufficiently small then

exit loop
end if

end for
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How to pick search direction p

Gradient Descent Method: pk = −∇f (xk ) = rk

Gradient Descent Algorithm

r = b − Ax
for k = 0, ·.maxIter − 1 do

α = rT r
rT Ar

x = x + αr
if rT r is sufficiently small then

exit loop
end if
r = r − αAr

end for
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How to pick search direction p

Conjugate Gradient Method

given x0, p0 = −∇f = r (r is the gradient of f )
given xk , pk+1 = rk+1 + βk pk , in which pk+1 and pk are A-conjugate (pT

k+1Apk = 〈pk+1,pk 〉A = 0)

〈pk+1,pk 〉A = pT
k+1Apk = (rk+1 + βk pk )

T Apk = 0

⇒ βk = − rT
k+1Apk

pT
k Apk

January 26, 2022 Slide 12 40



Summary
Finally we have

xk+1 = xk + αpk

pk+1 = rk+1 + βk pk

α =
rT
k pk

pT
k Apk

βk = − rT
k+1Apk

pT
k Apk

〈rk ,pj〉 = 0, j < k

〈rk , rj〉 = 0, j < k
〈Apk ,pj〉 = 0, j < k
r0, r1, r2, · · · : Orthogonal
p0,p1,p2, · · · : A-orthogonal
span(r0, · · · , rk−1) = span(p0, · · · ,pk−1) =
K (A, r0)

January 26, 2022 Slide 13 40



CG algorithm: preliminary version

r0 = b − Ax0 . SpMV + BLAS 1: AXPY
p0 = r0 . BLAS 1: COPY
for k = 0, ·.maxIter − 1 do

ωk = Apk . SpMV

αk = rk
T pk

pk
Tωk

. BLAS 1: DOT
xk+1 = xk + αk pk . BLAS 1: AXPY
rk+1 = b − Axk+1 . SpMV + BLAS 1: AXPY
if ||rk+1|| < tol then

break
end if
βk = − rT

k+1ωk

pT
k ωk

. BLAS 1: DOT

pk+1 = rk+1 + βk pk . BLAS 1: AXPY
end for
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Summary
Finally we have

xk+1 = xk + αpk

rk+1 = rk − αk Apk

pk+1 = rk+1 + βk pk

α =
rT
k pk

pT
k Apk

= rk
T rk

pk
Tωk

βk = − rT
k+1Apk

pT
k Apk

= rk+1
T rk+1

rk
T rk

〈rk ,pj〉 = 0, j < k

〈rk , rj〉 = 0, j < k

〈Apk ,pj〉 = 0, j < k

r0, r1, r2, · · · : Orthogonal

p0,p1,p2, · · · : A-orthogonal

span(r0, · · · , rk−1) = span(p0, · · · ,pk−1) =
K (A, r0)
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CG algorithm: economical version

r0 = b − Ax0 . SpMV + BLAS 1: AXPY
p0 = r0 . BLAS 1: COPY
for k = 0, ·.maxIter − 1 do

ωk = Apk . SpMV

αk = rk
T rk

pk
Tωk

. BLAS 1: DOT
xk+1 = xk + αk pk . BLAS 1: AXPY
rk+1 = rk − αkωk . BLAS 1: AXPY
if ||rk+1|| < tol then

break
end if
βk = rk+1

T rk+1
rk

T rk
. BLAS 1: DOT

pk+1 = rk+1 + βk pk . BLAS 1: AXPY
end for
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CG: 4× 4 matrix
Example: Solve

12 −1 2 0
−1 14 −1 3
2 −1 9 −1
0 3 −1 8




x1
x2
x3
x4

 =


8

31
−10
15


Exact solution:

x∗ =


1
2
−1
1


k=0 k=1 k=2 k=3 k=4

x0 0 0.545014 1.007874 1.000058 1.000000

x1 0 2.111929 2.008764 1.999956 2.000000

x2 0 -0.681267 -0.984438 -1.000113 -1.000000

x3 0 1.021901 1.026010 1.000067 1.000000

||rk || 36.742346 5.553680 0.328046 0.001235 0.000000
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CG example 1: HB/nos3
960× 960 symmetric matrix, FE for Biharmonic operator on Plate
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CG example 2: HB/bcsstk15
3948× 3948 matrix - module of an offshore platform
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Convergence Bounds of CG

Let λ1 ≤ λ2 · · · ≤ λn be the ordered eigenvalues of a s.p.d. A:

||Xt+1 − x∗||2A ≤ (λn−t−λ1
λn−t+λ1

)2||x0 − x∗||2A

||Xt+1 − x∗||2A ≤ 2(
√
κ(A)−1√
κ(A)+1

)t ||x0 − x∗||2A,

where κ(A) = λn
λ1

is the condition number of A.

Important messages:
Roughly speaking, if the eigenvalues of A occur in r distinct clusters, the CG iterates will
approximately solve the problem after Q(r) steps.
A with a small condition number (a single cluster of eigenvalues) converges fast

e.g., condition number of nos3 matrix is 37723.6, and the one of bcsstk15 is 6.53819e + 09.
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Preconditioned Conjugate Gradient algorithm (PCG)

idea: apply CG after linear change of coordinates x = Ty , with det(T ) 6= 0
use standard CG to solve T T ATy = T T b, then x∗ = T−1y∗

M = TT T is called a preconditioner
can re-arrange computation so each iteration requires one multiply by M (and A), and no final
solve x∗ = T−1y∗

if spectrum of T T AT (which is the same as the one of MA) is clustered or κ(A) is small, PCG
converges fast

extreme case: M = A−1, which makes MA an identity matrix
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Preconditioned CG: algorithm
with preconditioner M ≈ A−1 (hopefully)

r0 = b − Ax0 . SpMV + BLAS 1: AXPY
p0 = r0 . BLAS 1: COPY
for k = 0, ·.maxIter − 1 do

ωk = Apk . SpMV

αk = rk
T rk

pk
Tωk

. BLAS 1: DOT
xk+1 = xk + αk pk . BLAS 1: AXPY
rk+1 = rk − αkωk . BLAS 1: AXPY
if ||rk+1|| < tol then

break
end if
βk = rk+1

T rk+1
rk

T rk
. BLAS 1: DOT

pk+1 = rk+1 + βk pk . BLAS 1: AXPY
end for
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Preconditioned CG: algorithm
with preconditioner M ≈ A−1 (hopefully)

r0 = b − Ax0 . SpMV + BLAS 1: AXPY
p0 = r0 . BLAS 1: COPY
z0 = Mr0 . SpMV? BLAS 2 GEMV?
for k = 0, ·.maxIter − 1 do

ωk = Apk . SpMV

αk = rk
T zk

pk
Tωk

. BLAS 1: DOT
xk+1 = xk + αk pk . BLAS 1: AXPY
rk+1 = rk − αkωk . BLAS 1: AXPY
if ||rk+1|| < tol then

break
end if
zk = Mrk . SpMV? BLAS 2 GEMV?

βk = rk+1
T rk+1

rk
T rk

. BLAS 1: DOT
pk+1 = rk+1 + βk pk . BLAS 1: AXPY

end for
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Some generic preconditioners

For a symmetric positive definite matrix A, some generic preconditioners are:
Jacobi: M = D−1, with D is the diagonal of matrix A
SSOR1: M = P−1, with P = (D + L)D−1(D + L)T

D refers to the diagonal of A
L refers to the lower triangular part of A

Incomplete Cholesky factorization: use M = Â−1, where Â = L̂L̂T is an approximation of A
with cheap Cholesky factorization

Compute Â = L̂L̂T

– Â can be central k wide band of A
– L̂ obtained by sparse Cholesky factorization of A, ignoring small elements in A, or refusing to create

excessive fill-in.

at each iteration, compute Mz = L̂−T L̂−1z with forward/backward substitution

1Symmetric successive over-relaxation
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PCG example 1: HB/bcsstk15
3948× 3948 matrix - module of an offshore platform
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PCG example 2: Nasa/nasa4704
4704× 4704 matrix - from NASA Langley
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PCG example 3: Boeing/crystm01
4875× 4875 FEM Crystal free vibration mass matrix
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PCG example 4: Bai/mhd3200b
3200× 3200matrixforAlfvenspectrainMagnetohydrodynamics
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Choice of preconditioner

trade-off between enhanced convergence, and extra cost of multiplication by M at each step
SpMV if M could be sparse, e.g., Jacobi preconditioner
BLAS 2 GEMV if M could be dense, e.g., SSOR preconditioner

goal is to find M that is cheap to multiply, and approximate inverse of A (or at least has a more
clustered spectrum than A)
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Choice of preconditioner

trade-off between enhanced convergence, and extra cost of multiplication by M at each step
SpMV if M could be sparse, e.g., Jacobi preconditioner
BLAS 2 GEMV if M could be dense, e.g., SSOR preconditioner

goal is to find M that is cheap to multiply, and approximate inverse of A (or at least has a more
clustered spectrum than A)

This strategy of this trade-off will be demonstrated in homework 1 by exercises
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(P)CG summary

in theory (with exact arithmetic) converges to solution in n steps
the bad news: due to numerical round-off errors, can take more than n steps (or fail to converge)
the good news: with luck (i.e., good spectrum of A), can get good approximate solution in� n steps

each step requires v → Av multiplication
can exploit a variety of structure in A
in many cases, never form or store the matrix A explicitly

A good choice of preconditioner will significantly speedup the solving procedure
compared to direct (factor-solve) methods, CG is less reliable, data dependent; often requires
good (problem-dependent) preconditioner
but, when it works, can solve extremely large systems

January 26, 2022 Slide 29 40



Part II: PageRank Method



Problem Statement

Not all web pages are equally ”important”.

https://www.bbc.com (BBC)
vs

https://brunowu.github.io (My personal webpage)

PageRank (PR):
an algorithm used by Google Search to rank web pages in their search engine results

mesuring the importance of webpages..

introduced by Larray Page. the co-founder of Google.
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PageRank: Links as votes

[source: https://en.wikipedia.org/wiki/PageRank]

Links as votes
In-links as votes
In-links are not equal:

Links from important pages count more
Recursive definition
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PageRank: Links as votes

Each link’s vote is proportional to the
importance of its source page
Page j with importance rj has n outlinks,
each links gets rj

n
Page’s own importance is the sum of the
votes on its in-links

a ”rank” rj for page j is rj =
∑

i→j
ri
di

additional constraint
∑

j rj = 1
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Construct Stochastic Adjacency Matrix from Graph

For a stochastic adjacency matrix M
Page i has di out-links
If i → j , the Mji =

1
di

, else Mji = 0
columns sum to 1
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Construct Stochastic Adjacency Matrix from Graph

For a stochastic adjacency matrix M
Page i has di out-links
If i → j , the Mji =

1
di

, else Mji = 0
columns sum to 1

Adjacency Matrix
0 0 1 1
1 0 0 0
1 1 0 1
1 1 0 0


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Construct Stochastic Adjacency Matrix from Graph

For a stochastic adjacency matrix M
Page i has di out-links
If i → j , the Mji =

1
di

, else Mji = 0
columns sum to 1

Stochastic Adjacency Matrix
0 0 1 1/2

1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0


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Construct Stochastic Adjacency Matrix from Graph

For a stochastic adjacency matrix M
Page i has di out-links
If i → j , the Mji =

1
di

, else Mji = 0
columns sum to 1

⇒ r = Mr
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Construct Stochastic Adjacency Matrix from Graph

⇒ r = Mr

To solve it is to find the eigenvectors with
corresponding eigenvalue 1
Luckily, Largest eigenvalue of a stochastic
matrix with non-negative entries is 1
We can use Power Iteration method.
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A PageRank solver based on Power Iteration

Power iteration method to solve PageRank graph

At t = 0, an initial probability distribution V is randomly generated.
At each time step, the computation, rt+1 = Mrt

Convergence is assumed when |Vt+1 − Vt | < ε for some small ε.

The most important kernel of this solver is rt+1 = Mrt , SpMV.
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A PageRank solver based on Power Iteration

Try to interpret the result


0.39
0.13
0.29
0.19


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Spider traps

all out-links are within a group
Random walk gets “stuck” in a trap
it absorbs all importance


0 0.5 0 0
1 0 0.5 0
0 0 0 1
0 0.5 0.5 0

with


0.142
0.286
0.286
0.286


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Dead ends
all out-links are within a group

”No where to go” for some random
walk
”leaking” the importance0 0.5 0

1 0 0
0 0.5 0

with

0.0
0.0
0.0


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Google’s solution: introducing a Damping factor

a ”rank ” rj of a webpage j with a damping factor β

rj =
∑

i→j β
ri
di
+ (1− β) 1

N

At each time step, the random surfer has two options:
follow a link at random with probability β
jump to some random page with probability 1− β
Common value for β is between 0.8 and 0.9

Try the PageRank with Damping factor in the homework.
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PageRank Summary

”Normal” PageRank
Topic-specific PageRank (Personalized PageRank)
Random walk with restarts
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Homework

CG: ./tasks/homework-1/LinearSolver.ipynb
PageRank: ./tasks/homework-2/PageRank.ipynb
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