

High-Performance Matrix Computations

Sparse Matrix Applications: CG & PageRank

January 26, 2022 | Xinzhe Wu (xin.wu@fz-juelich.de) | Jülich Supercomputing Centre

Organisation

Topics: High-Performance Computations of Sparse Matrices

- Module 1 (Jan. 24): Sparse Matrix Representations and Computations
- Module 2 (Jan. 26): Applications of Sparse Matrix:
 - Iterative linear solver: Conjugate Gradient method (CG)
 - Graph analytics: PageRank algorithm to rank webpages
- Lectures based on slides
- Practical examples and exercises
 - Module 1: C codes on Laptop and CLAIX
 - numerical kernel implementation
 - calling of high-performance libraries for sparse matrices
 - testing and benchmarking
 - 2 Module 2: Jupyter notebooks with Julia on Laptop
 - Questions in sequence during the execution of Jupyter notebooks

Part I: Conjugate Gradient Method

Sparse Linear Solvers

- Solve sparse linear system (Ax = b) in which A is a sparse matrix
- Variety of direct and iterative methods

Three classes of linear solvers

The methods to solve linear system Ax = b, with $A \in \mathbb{R}^{n \times n}$ can be split into thee classes

- dense direct solver
 - factor-solve method
 - runtime depends on size; independent of A and b, and structure of A
 - work well for n up to 10⁴
- sparse direct solver
 - factor-solve based
 - runtime depends on size, sparsity pattern of A; (almost) independent of data
 - can work well for n up to 10⁵ (or more).
 - requires good heuristic for ordering
- indirect (iterative methods)
 - runtime depends on data (A and b), size, sparsity, desired accuracy
 - requires tuning, preconditioning, · · ·
 - good choice in many cases; only chose for $n = 10^6$ or larger

Direct solvers vs Iterative solvers

Direct Solver

- Robust
- Black-box operation
- Difficult to parallelize
- Memory consumption
- Limited scalability

Iterative Solver

- Breakdown issues
- lots of parameters
- easy to parallelize
- low memory footprint
- scalable

Some Iterative Solvers

To solve Ax = b with splitting A = L + D + U, with a iterate such that $x_{t+1} = Gx_t + f$, it converges only with the spectrum radius $\rho(G) < 1$.

- **Jacobi method**: $x_{i+1} = -D^{-1}(L+U)x_t + D^{-1}b$
- **Gauss-Seidel method**: $x_{i+1} = -(D+L)^{-1}Ux_t + (D+L)^{-1}b$
- Successive over-relaxation (SSOR):

$$x_{i+1} = (D + \omega L)^{-1}[(1 - \omega)D - \omega U]x_t + (D + \omega L)^{-1}(D + L)^{-1}\omega b$$

Krylov Subspace Methods: CG, GMRES, BiCGstab · · ·

$$\mathcal{K}_r(A,b) = span(b,Ab,A^2b,\ldots,A^{r-1}b)$$

Symmetric Positive Definite (s.p.d.) Linear Systems

s.p.d. linear systems

$$Ax = b$$
, $A \in \mathbb{R}^{n \times n}$, $A = A^T$, and $X^T AX > 0$ for all non-zero $X \in \mathbb{R}^n$

CG overview

- invented by Hestenes and Stiefel in 1952 as a direct method
- Solve s.p.d. linear system
- Theoretically, converge in n iterations
- Each iteration includes a matrix-vector multiply and a few inner products
- If A is dense, each step costs n^2 , so total cost is n^3 , same as direct method
- get advantage over dense with a cheaper matrix-vector product operation (SpMV)
- It can work poorly in reality due to round-off error
- for "good" linear systems, can get approximation in far less than *n* iterations.

Slide 7140

CG methodology

Idea

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

$$r = b - Ax$$

■ $-\nabla f = Ax - b = r$ with A s.p.d.

 \rightarrow Find $x \ s.t \ Ax = b \Leftrightarrow$ Find $x \ s.t \ f(x)$ is minimum

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

CG methodology

Idea

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

$$r = b - Ax$$

 $-\nabla f = Ax - b = r$ with A s.p.d.

 \rightarrow Find $x \, s.t \, Ax = b \Leftrightarrow$ Find $x \, s.t \, f(x)$ is minimum

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

CG methodology

Method

Given x_0 as a starting point:

• Searching iterate: $x_{k+1} = x_k + \alpha_k p_k$

• Search direction: p_0, p_1, p_2, \cdots

• Step length: $\alpha_0, \alpha_1, \alpha_2, \cdots$

How to determine step length α_k

 $X_{k+1} = X_k + \alpha_k p_k$

For a given x_k and a given direction p_k , find α s.t f(x) is minimized

$$\frac{\mathrm{d}f(x_{k+1})}{\mathrm{d}\alpha} = \left[\nabla f(x_{k+1})\right]^T \frac{\mathrm{d}x_{k+1}}{\mathrm{d}\alpha} = -r_{k+1}^T \frac{\mathrm{d}x_{k+1}}{\mathrm{d}\alpha} = -r_{k+1}^T \rho_k \Rightarrow -r_{k+1}^T \rho_k = 0$$

$$-r_{k+1}^T p_k = 0 \Rightarrow (b - Ax_{k+1})^T p_k = 0 \Rightarrow (b - A(x_k + \alpha p_k)) = 0 \Rightarrow (r_k - \alpha A p_k)^T p_k = 0$$

$$\Rightarrow \alpha_k = \frac{r_k^T p_k}{p_k^T A p_k}$$

How to pick search direction p

Gradient Descent Method: $p_k = -\nabla f(x_k) = r_k$

Gradient Descent Algorithm

```
for k=0, \cdot .maxlter-1 do

r=b-Ax

\alpha=\frac{r^Tr}{r^TAr}

x=x+\alpha r

if r^Tr is sufficiently small then

exit loop

end if
end for
```


How to pick search direction p

Gradient Descent Method: $p_k = -\nabla f(x_k) = r_k$

Gradient Descent Algorithm

```
r = b - Ax

for k = 0, ...max/ter - 1 do

\alpha = \frac{r^T r}{r^T A r}

x = x + \alpha r

if r^T r is sufficiently small then

exit loop

end if

r = r - \alpha A r

end for
```


How to pick search direction p

Conjugate Gradient Method

given x_0 , $p_0 = -\nabla f = r$ (r is the gradient of f) given x_k , $p_{k+1} = r_{k+1} + \beta_k p_k$, in which p_{k+1} and p_k are A-conjugate $(p_{k+1}^T A p_k = \langle p_{k+1}, p_k \rangle_A = 0)$

$$\langle p_{k+1}, p_k \rangle_A = p_{k+1}^T A p_k = (r_{k+1} + \beta_k p_k)^T A p_k = 0$$

$$\Rightarrow \beta_k = -\frac{r_{k+1}^T A \rho_k}{\rho_k^T A \rho_k}$$

Summary

Finally we have

$$x_{k+1} = x_k + \alpha p_k$$

$$p_{k+1} = r_{k+1} + \beta_k p_k$$

$$\bullet \ \alpha = \frac{\mathbf{r}_k^T \mathbf{p}_k}{\mathbf{p}_k^T \mathbf{A} \mathbf{p}_k}$$

$$\beta_k = -\frac{r_{k+1}^T A p_k}{p_k^T A p_k}$$

•
$$\langle r_k, r_j \rangle = 0, \quad j < k$$

•
$$r_0, r_1, r_2, \cdots$$
: Orthogonal

•
$$p_0, p_1, p_2, \cdots$$
: A-orthogonal

$$span(r_0, \cdots, r_{k-1}) = span(p_0, \cdots, p_{k-1}) = K(A, r_0)$$

CG algorithm: preliminary version

```
r_0 = b - Ax_0

▷ SpMV + BLAS 1: AXPY

                                                                               ▶ BLAS 1: COPY
p_0 = r_0
for k = 0, ... maxIter - 1 do
     \omega_k = Ap_k

    SpMV

    \alpha_{k} = \frac{r_{k}^{T} p_{k}}{p_{k}^{T} \omega_{\nu}}
                                                                                  D BLAS 1: DOT
     X_{k+1} = X_k + \alpha_k p_k
                                                                                D BLAS 1: AXPY
     r_{k+1} = b - Ax_{k+1}

▷ SpMV + BLAS 1: AXPY

     if ||r_{k+1}|| < tol then
          break
     end if
     \beta_k = -\frac{r_{k+1}^T \omega_k}{p_k^T \omega_k}
                                                                                 ▶ BLAS 1: DOT
     p_{k+1} = r_{k+1} + \beta_k p_k
                                                                                ▷ BLAS 1: AXPY
end for
```


Summary

Finally we have

$$x_{k+1} = x_k + \alpha p_k$$

$$r_{k+1} = r_k - \alpha_k A p_k$$

$$p_{k+1} = r_{k+1} + \beta_k p_k$$

$$\bullet \alpha = \frac{\mathbf{r}_{k}^{T} \mathbf{p}_{k}}{\mathbf{p}_{k}^{T} A \mathbf{p}_{k}} = \frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{p}_{k}^{T} \omega_{k}}$$

•
$$\langle r_k, r_j \rangle = 0, \quad j < k$$

•
$$r_0, r_1, r_2, \cdots$$
: Orthogonal

•
$$p_0, p_1, p_2, \cdots$$
: A-orthogonal

■
$$span(r_0, \dots, r_{k-1}) = span(p_0, \dots, p_{k-1}) = K(A, r_0)$$

CG algorithm: economical version

```
r_0 = b - Ax_0

▷ SpMV + BLAS 1: AXPY

p_0 = r_0
                                                                                                ▶ BLAS 1: COPY
for k = 0, ... maxlter - 1 do
     \omega_k = Ap_k

    SpMV

     \alpha_{\mathbf{k}} = \frac{\mathbf{r}_{\mathbf{k}}^T \mathbf{r}_{\mathbf{k}}}{\mathbf{p}_{\mathbf{k}}^T \mathbf{\omega}_{\mathbf{k}}}
                                                                                                  ▶ BLAS 1: DOT
      X_{k+1} = X_k + \alpha_k D_k
                                                                                                D BLAS 1: AXPY
      r_{k+1} = r_k - \alpha_k \omega_k
                                                                                                D BLAS 1: AXPY
      if ||r_{k+1}|| < tol then
            break
      end if
    \beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}
                                                                                                  ▶ BLAS 1: DOT
      p_{k+1} = r_{k+1}^{\kappa} + \beta_k p_k
                                                                                                 > BLAS 1: AXPY
end for
```


CG: 4×4 matrix

Example: Solve

 $\begin{pmatrix} 12 & -1 & 2 & 0 \\ -1 & 14 & -1 & 3 \\ 2 & -1 & 9 & -1 \\ 0 & 3 & -1 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 31 \\ -10 \\ 15 \end{pmatrix}$

Exact solution:

$$x^* = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}$$

	k=0	k=1	k=2	k=3	k=4
<i>X</i> ₀	0	0.545014	1.007874	1.000058	1.000000
<i>X</i> ₁	0	2.111929	2.008764	1.999956	2.000000
<i>X</i> ₂	0	-0.681267	-0.984438	-1.000113	-1.000000
<i>X</i> ₃	0	1.021901	1.026010	1.000067	1.000000
$ r_k $	36.742346	5.553680	0.328046	0.001235	0.000000

CG example 1: HB/nos3

 960×960 symmetric matrix, FE for Biharmonic operator on Plate

CG example 2: HB/bcsstk15

 3948×3948 matrix - module of an offshore platform

Convergence Bounds of CG

Let $\lambda_1 \leq \lambda_2 \cdots \leq \lambda_n$ be the ordered eigenvalues of a s.p.d. *A*:

$$||X_{t+1} - X_*||_A^2 \le (\frac{\lambda_{n-t} - \lambda_1}{\lambda_{n-t} + \lambda_1})^2 ||X_0 - X_*||_A^2$$

$$||X_{t+1} - x_*||_A^2 \le 2(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1})^t ||x_0 - x_*||_A^2,$$

where $\kappa(A) = \frac{\lambda_n}{\lambda_1}$ is the condition number of A.

Important messages:

- Roughly speaking, if the eigenvalues of A occur in r distinct clusters, the CG iterates will approximately solve the problem after Q(r) steps.
- A with a small condition number (a single cluster of eigenvalues) converges fast
 - e.g., condition number of nos3 matrix is 37723.6, and the one of bcsstk15 is 6.53819e + 09.

Preconditioned Conjugate Gradient algorithm (PCG)

- idea: apply CG after linear change of coordinates x = Ty, with $det(T) \neq 0$
- use standard CG to solve $T^TATy = T^Tb$, then $x^* = T^{-1}y^*$
- $M = TT^T$ is called a preconditioner
- can re-arrange computation so each iteration requires one multiply by M (and A), and no final solve $x^* = T^{-1}y^*$
- if spectrum of T^TAT (which is the same as the one of MA) is clustered or $\kappa(A)$ is small, PCG converges fast
 - extreme case: $M = A^{-1}$, which makes MA an identity matrix

Preconditioned CG: algorithm

with preconditioner $M \approx A^{-1}$ (hopefully)

$$\begin{aligned} r_0 &= b - Ax_0 \\ p_0 &= r_0 \\ \text{for } k &= 0, \cdot .maxlter - 1 \text{ do} \\ \omega_k &= Ap_k \\ \alpha_k &= \frac{r_k^T r_k}{p_k T \omega_k} \\ x_{k+1} &= x_k + \alpha_k p_k \\ if ||r_{k+1}|| &< tol \text{ then} \\ break \\ &= \text{nd if} \\ \beta_k &= \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \\ p_{k+1} &= r_{k+1} + \beta_k p_k \end{aligned} \qquad \begin{array}{c} \triangleright \text{ SpMV} + \text{ BLAS 1: AXPY} \\ \triangleright \text{ BLAS 1: DOT} \\ \triangleright \text{ BLAS 1: AXPY} \\ \triangleright \text{ BLAS 1: DOT} \\ \triangleright \text{ BLAS 1: DOT} \\ \triangleright \text{ BLAS 1: DOT} \\ \triangleright \text{ BLAS 1: AXPY} \\ \bullet \text{ BLAS 1:$$

Preconditioned CG: algorithm

with preconditioner $M \approx A^{-1}$ (hopefully)

$$r_0 = b - Ax_0$$
 $p_0 = r_0$
 $z_0 = Mr_0$
for $k = 0, ...maxIter - 1$ do
$$\omega_k = Ap_k$$

$$\alpha_k = \frac{r_k}{p_k T\omega_k}$$

$$x_{k+1} = x_k + \alpha_k p_k$$

$$r_{k+1} = r_k - \alpha_k \omega_k$$
if $||r_{k+1}|| < tol$ then
break
end if
$$z_k = Mr_k$$

$$\beta_k = \frac{r_{k+1}}{r_k T_{r_k}}$$

$$p_{k+1} = r_{k+1} + \beta_k p_k$$

▷ SpMV + BLAS 1: AXPY
▷ BLAS 1: COPY
▷ SpMV? BLAS 2 GEMV?

⊳ SpMV

▷ BLAS 1: DOT
▷ BLAS 1: AXPY
▷ BLAS 1: AXPY

▷ SpMV? BLAS 2 GEMV?

▷ BLAS 1: DOT
▷ BLAS 1: AXPY

Some generic preconditioners

For a symmetric positive definite matrix *A*, some generic preconditioners are:

- **Jacobi**: $M = D^{-1}$, with D is the diagonal of matrix A
- **SSOR**¹: $M = P^{-1}$, with $P = (D + L)D^{-1}(D + L)^T$
 - D refers to the diagonal of A
 - L refers to the lower triangular part of A
- Incomplete Cholesky factorization: use $M = \hat{A}^{-1}$, where $\hat{A} = \hat{L}\hat{L}^T$ is an approximation of A with cheap Cholesky factorization
 - Compute $\hat{A} = \hat{L}\hat{L}^T$
 - $-\hat{A}$ can be central k wide band of A
 - L
 obtained by sparse Cholesky factorization of A, ignoring small elements in A, or refusing to create
 excessive fill-in.
 - at each iteration, compute $Mz = \hat{L}^{-T}\hat{L}^{-1}z$ with forward/backward substitution

¹Symmetric successive over-relaxation

PCG example 1: HB/bcsstk15

 3948×3948 matrix - module of an offshore platform

PCG example 2: Nasa/nasa4704

 4704×4704 matrix - from NASA Langley

PCG example 3: Boeing/crystm01

 4875×4875 FEM Crystal free vibration mass matrix

PCG example 4: Bai/mhd3200b

 $3200 \times 3200 \textit{matrix} for \textit{Alfven spectra in Magnetohydrodynamics}$

Choice of preconditioner

- trade-off between enhanced convergence, and extra cost of multiplication by M at each step
 - **SpMV** if *M* could be sparse, e.g., Jacobi preconditioner
 - BLAS 2 GEMV if M could be dense, e.g., SSOR preconditioner
- goal is to find M that is cheap to multiply, and approximate inverse of A (or at least has a more clustered spectrum than A)

Choice of preconditioner

- trade-off between enhanced convergence, and extra cost of multiplication by *M* at each step
 - **SpMV** if *M* could be sparse, e.g., Jacobi preconditioner
 - BLAS 2 GEMV if M could be dense, e.g., SSOR preconditioner
- goal is to find M that is cheap to multiply, and approximate inverse of A (or at least has a more clustered spectrum than A)

This strategy of this trade-off will be demonstrated in **homework 1** by exercises

(P)CG summary

- in theory (with exact arithmetic) converges to solution in n steps
 - the bad news: due to numerical round-off errors, can take more than *n* steps (or fail to converge)
 - the good news: with luck (i.e., good spectrum of A), can get good approximate solution in $\ll n$ steps
- each step requires $v \rightarrow Av$ multiplication
 - can exploit a variety of structure in A
 - in many cases, never form or store the matrix A explicitly
- A good choice of preconditioner will significantly speedup the solving procedure
- compared to direct (factor-solve) methods, CG is less reliable, data dependent; often requires good (problem-dependent) preconditioner
- but, when it works, can solve extremely large systems

January 26, 2022 Slide 29140

Part II: PageRank Method

Problem Statement

Not all web pages are equally "important".

```
■ https://www.bbc.com (BBC)
```

vs

https://brunowu.github.io (My personal webpage)

PageRank (PR):

- an algorithm used by Google Search to rank web pages in their search engine results
 - mesuring the importance of webpages..
- introduced by Larray Page. the co-founder of Google.

PageRank: Links as votes

[SOURCE: https://en.wikipedia.org/wiki/PageRank]

- Links as votes
- In-links as votes
- In-links are not equal:
 - Links from important pages count more
 - Recursive definition

PageRank: Links as votes

- Each link's vote is proportional to the importance of its source page
- Page j with importance r_j has n outlinks, each links gets $\frac{r_j}{n}$
- Page's own importance is the sum of the votes on its in-links
 - lacksquare a "rank" r_j for page j is $r_j = \sum_{i o j} rac{r_i}{d_i}$
 - additional constraint $\sum_{j} r_{j} = 1$

For a stochastic adjacency matrix *M*

- Page *i* has *d_i* out-links
- If $i \rightarrow j$, the $M_{ji} = \frac{1}{d_i}$, else $M_{ji} = 0$
- columns sum to 1

For a stochastic adjacency matrix *M*

- Page *i* has *d_i* out-links
- If $i \rightarrow j$, the $M_{ji} = \frac{1}{d_i}$, else $M_{ji} = 0$
- columns sum to 1

Adjacency Matrix

$$\begin{pmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix}$$

For a stochastic adjacency matrix *M*

- Page *i* has *d_i* out-links
- If $i \rightarrow j$, the $M_{ji} = \frac{1}{d_i}$, else $M_{ji} = 0$
- columns sum to 1

Stochastic Adjacency Matrix

$$\begin{pmatrix}
0 & 0 & 1 & 1/2 \\
1/3 & 0 & 0 & 0 \\
1/3 & 1/2 & 0 & 1/2 \\
1/3 & 1/2 & 0 & 0
\end{pmatrix}$$

For a stochastic adjacency matrix *M*

- Page *i* has *d_i* out-links
- If $i \rightarrow j$, the $M_{ji} = \frac{1}{d_i}$, else $M_{ji} = 0$
- columns sum to 1

$$\Rightarrow r = Mr$$

$$\Rightarrow r = Mr$$

- To solve it is to find the eigenvectors with corresponding eigenvalue 1
- Luckily, Largest eigenvalue of a stochastic matrix with non-negative entries is 1
- We can use Power Iteration method.

A PageRank solver based on Power Iteration

Power iteration method to solve PageRank graph

- At t = 0, an initial probability distribution V is randomly generated.
- At each time step, the computation, $r_{t+1} = Mr_t$
- Convergence is assumed when $|V_{t+1} V_t| < \epsilon$ for some small ϵ .

The most important kernel of this solver is $r_{t+1} = Mr_t$, SpMV.

Slide 3/1/0

A PageRank solver based on Power Iteration

Try to interpret the result

Spider traps

all out-links are within a group

- Random walk gets "stuck" in a trap
- it absorbs all importance

$$\begin{pmatrix} 0 & 0.5 & 0 & 0 \\ 1 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0.5 & 0.5 & 0 \end{pmatrix} \text{ with } \begin{pmatrix} 0.142 \\ 0.286 \\ 0.286 \\ 0.286 \end{pmatrix}$$

Dead ends

all out-links are within a group

- "No where to go" for some random walk
- "leaking" the importance

$$\begin{pmatrix} 0 & 0.5 & 0 \\ 1 & 0 & 0 \\ 0 & 0.5 & 0 \end{pmatrix} \text{ with } \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$$

Google's solution: introducing a Damping factor

a "rank" r_i of a webpage j with a damping factor β

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

At each time step, the random surfer has two options:

- follow a link at random with probability β
- jump to some random page with probability 1β
- Common value for β is between 0.8 and 0.9

Try the PageRank with Damping factor in the homework.

PageRank Summary

- "Normal" PageRank
- Topic-specific PageRank (Personalized PageRank)
- Random walk with restarts

Homework

- CG: ./tasks/homework-1/LinearSolver.ipynb
- PageRank: ./tasks/homework-2/PageRank.ipynb

